<tt id="a3jom"></tt>
    1. <tt id="a3jom"><noscript id="a3jom"></noscript></tt>

        <tt id="a3jom"></tt>

        線性代數總結

        上傳人:ba****u 文檔編號:176807391 上傳時間:2022-12-24 格式:DOCX 頁數:6 大?。?0.60KB
        收藏 版權申訴 舉報 下載
        線性代數總結_第1頁
        第1頁 / 共6頁
        線性代數總結_第2頁
        第2頁 / 共6頁
        線性代數總結_第3頁
        第3頁 / 共6頁
        資源描述:

        《線性代數總結》由會員分享,可在線閱讀,更多相關《線性代數總結(6頁珍藏版)》請在裝配圖網上搜索。

        1、線性代數解題方法技巧歸納:線性代數解題方法技巧歸納(第 3 版)是學習線性代數的指導 書,也是備考碩士研究生的應試指南。它將線性代數主要內容按問題 分類。通過對精選例題的分析。歸納解題方法和技巧,總結解題規律。 例題和習題主要來自兩部分:一部分是同濟大學數學系編的線性代 數(第五版)中較難解的典型習題,另一部分是歷屆全國碩士研究 生入學考試數學試卷一和數學試卷二中的線性代數試題。線性代數 解題方法技巧歸納(第 3 版)題型廣泛。內容豐富,基本上覆蓋了線 性代數的主要內容。讀者可從中加深理解線性代數的主要內容,熟練 掌握各種解題方法、技巧和規律,提高解題和應試能力。作者簡介:毛綱源教授,畢業于武

        2、漢大學,留校任教,后調入武漢理工大學 擔任數學物理系系主任,在高校從事數學教學與科研工作 40 余年, 發表多篇考研數學論文,主講微積分、線性代數、概率論與數理統計 課程。理論功底深厚,教學經驗豐富,思維獨特?,F受聘于北京師范 大學珠海分校教授,擔任數學的雙語教學工作。曾多次受邀在山東、 廣東、湖北等地主講考研數學,并得到學員的廣泛認可和一致好評: “知識淵博,講解深入淺出,易于接受”?!敖忸}方法靈活,技巧獨 特,輔導針對性極強”,“對考研數學的出題形式、考試重難點了如 指掌,上他的輔導班受益匪淺”同樣,毛老師的輔導書也受到讀 者的歡迎與好評,有興趣的讀者可以上網查詢有關對他編寫的圖書的 評價

        3、。圖書目錄:第 1 章 行列式計算1.1 如何用定義計算行列式及其部分項1.2 如何計算一行(列)與另一行(列)的分行(分列)成比例 的行列式1.3 行列式按行(列)展開定理的兩點應用1.4 三對角線型行列式的算(證)法1.5 三對角線型變形行列式的算(證)法1.6 利用行列式性質計算幾類行列式1.7 如何利用范德蒙行列式計算行列式1.8 克萊姆法則的應用第 2 章 矩陣2.1 如何避免矩陣運算中的常犯錯誤2.2 矩陣可逆及其逆矩陣表示式的同證方法2.3 逆矩陣的求法2.4 簡單矩陣方程的解法2.5 對稱矩陣與反對稱矩陣2.6 伴隨矩陣的幾個性質的應用2.7 元素沒有具體給出的矩陣行列式算法2

        4、.8 抽象方陣的行列式是否等于零的證法2.10 方陣高次冪的計算方法與技巧2.11 矩陣的初等變換與初等矩陣2.12 矩陣秩的求法與證法2.13 矩陣秩的不等式證法2.14 利用矩陣秩的關系,求其待求常數第 3 章 向量組的線性相關性3.1 如何正確理解線性相(無)關的定義3.2 求解向量線性表示的有關問題3.3 線性表出唯一性定理的應用3.4 兩向量組等價的證法3.5 判別向量組的線性相關性3.6 如何證明用線性無關向量組線性表出的向量組的線性相關 性3.7 最(極)大無關組的求法與證法3.8 證明向量組的秩的不等式3.9 向量空間第 4 章 線性方程組4.1 線性方程組解的判定或證明4.2

        5、 線性方程組解的結構與解的求法4.3 含參數的線性方程組的解法4.4 基礎解系的證法4.5 解向量的證法4.6 抽象線性方程組的求解4.7 已知基礎解系,如何反求其齊次線性方程組4.8 與 AB=0 有關的三問題的解(證)法4.9 討論(證明)兩方程組解之間的關系(公共解、同解)第 5 章 矩陣的特征值和特征向量5.1 特征值、特征向量的求法和證法5.2 矩陣特征值的和與積的性質的應用5.3 向量是與不是特征向量的證法5.4 相似矩陣與方陣的對角化5.5 方陣高次冪的簡便求(證)法5.6 已知 P1AP=A 中的兩者,如何求第三者5.7 實對稱矩陣的相似對角化5.8 已知矩陣可相似對角化,求其參數第 6 章 二次型6.1 實向量的內積與正交矩陣的證法6.2 標準形化法6.3 已知實二次型的標準形,求其參數和正交變換6.4 正交相似變換下的標準形在證題中的一些應用6.5 合同變換與合同矩陣6.6 正定二次型與正定矩陣第 7 章 線性空間和線性變換7.1 驗證一個集合是否構成線性空間7.2 驗證子集合是否為子空間7.3 線性空間基(底)的求法7.4 兩子空間相同的證法7.5 一組基到另一組基的過渡矩陣的求法7.6 求解與元素坐標有關的問題7.7 線性變換的矩陣求法習題答案或提示附錄同濟大學數學系編線性代數(第五版)部分習題解答查找表

        展開閱讀全文
        溫馨提示:
        1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
        2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
        3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
        4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
        5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
        6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
        7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
        關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯系我們

        網站客服QQ:2846424093或766697812

        copyright@ 2020-2023  zhuangpeitu.com 裝配圖網版權所有   聯系電話:0512-65154990  

        備案號:蘇ICP備12009002號-6   經營許可證:蘇B2-20200052  蘇公網安備:32050602011098


        本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!

        特级毛片a片全部免费播,特级毛片a片全部免费观看,特级毛片免费无码不卡观看,特级全黄a片高清视频

        <tt id="a3jom"></tt>
        1. <tt id="a3jom"><noscript id="a3jom"></noscript></tt>

            <tt id="a3jom"></tt>