表現在金剛石合成物和碳化物工具之間的磨耗和切割外文文獻翻譯、中英文翻譯、外文翻譯
表現在金剛石合成物和碳化物工具之間的磨耗和切割外文文獻翻譯、中英文翻譯、外文翻譯,表現,金剛石,合成物,碳化物,工具,之間,磨耗,切割,外文,文獻,翻譯,中英文
表現在金剛石合成物和碳化物工具之間的磨耗和切割一系列巖石的磨耗和切割測試被極其穩定的金剛石合成物(TSDC)和碳化鎢(WC)工具所承擔。磨耗試驗作為一個特定的目的被開展,磨耗測試在一個裝備了切割工具的,轉動的氧化鋁砂輪上進行。巖石切割試驗在一臺修改過的線性整平機上進行。 在這些測試期間,作用在刀具上的推力和切割力被測量了。兩種材料的磨耗系數用于評估磨耗表現,而切割表現由工具的磨損和有效切割距離的增量來估計。結果顯示WC切口元素的磨耗系數明顯高于顯示TSDC元素的磨耗系數。 TSDC采擷切口表現好比是WC采擷。 在同樣切口條件下,表現在WC采擷上推力明顯著高于表現在TSDC采擷上的。 實驗性結果表明TSDC可以被申請作為為切開堅硬和磨蝕巖石的一個有效工具。 本文由X. S. Li, J. N. Boland and H. Guo.提供。圖1巖石切割工具已經傳統地以碳化鎢(wc)為依據。Wc作為開挖隧道機和剪床鼓的切割工具,已經被使用了幾十年。他們已經證明了在絕大多數煤和軟巖石中的有效性和充分性,但是在堅硬巖石和強腐蝕性巖石中存在著不成功性和不合適性。要切開堅硬的和腐蝕的巖石,其中的一種方法就是用金剛石合成物代替WC。金剛石合成材料的主要改進,表現在黏合劑成分上的變化,由金屬鈷到陶瓷Sic, 而Sic是由易反應的(原子的)結合在焊接期間生產出來的,或是作為焊接操作的一個原始成分。這種金剛石合成物被認知為極其穩定的金剛石合成物(TSDC) 2, 3. 其中的一個工作宗旨是估計TSDC切口元素的磨耗特征。各種各樣的參量也許被用于表現材料的磨耗行為,但是磨耗系數是一個最常見的參量。磨耗系數在Archard磨耗式4中被給出:(1) Qtotal是代表磨耗測試中的磨損量,P代表裝載,S代表切口長度,H代表穿戴材料的表面硬度。無維常數K代表磨耗系數。當解釋實驗性的結果時,接口處材料的硬度或許不是很確定。一個更有用的參量是比率K/H或者k -,這被通認為尺寸磨耗系數5(mm3/Nm)。Qtotal、P和s的為已知值,K的值等于: (2) 另一個工作宗旨是評估和比較WC和TSDC切割元素在塊狀砂巖(UCS 120 MPa)上的切割表現,集中在CSIRO的巖石切割船具上。圖2實驗性細節磨耗試驗在一套為特定目的建造的磨耗試驗船具(圖1)上執行了。樣品被緊固在刀具柄內,并且橫跨轉動砂輪的表面,哺養了在切割的邊框形式深度。行動在元素上推力和切削力(參見圖2)由壓電池測量。來自壓電池的信號以可調整的獲取,通過了全國儀器的信號波形加工系統(NI-SCXI),記錄在私人電腦上,運行在鎳元素的實驗觀察下。一個玻璃化的保稅的鋁土砂輪(UCS 120 MPa, cerchar磨蝕性索引3.54,多孔性42%,氧化鋁粒度400m)被選擇為磨耗測試的標準制造量。輪子的最初維度是350毫米(外在直徑) x 50毫米(內部直徑) x 50.8毫米(寬度)。TSDC元素(16x20,密度3.4158 g/cc)和巖石品級碳化鎢(WC)切割元素(12x22.5,密度14.7070 g/cc)被用于測試中。試驗條件是: 輪子旋轉的速度:479.5 RPM,切割的深度:0.25毫米,供給率:1.22 mm/rev,測試的環境:干燥。每一個元素需要以0.0001g的準確性在磨耗實驗前后被斟酌,通過使用平衡(METTLER AE200)。通過元素在測試前后的重量,以及它的密度,可以計算出元素的磨損量。對TSDC元素的磨耗試驗進行了100切割。(一次輪子的穿過對應一次切割)然而,WC的磨耗率太高,以至于測試在達到100切割前就被終止了。 圖3巖石切割測試:巖石切割測試在一個修改過的整平機上執行,整平機的操作由計算機控制。線性切割速度(或巖石供給率)是在0.1m/s和2.5m/s之間的可調性軟件。切割沖程能達到3m.測試在砂巖上進行。塊的維度是1800x450x450mm.TSDC和WC切割元素被注入標準尺寸的巖石采擷體。切削刀鼓被安放在整平機的十字頭上,被一臺50千瓦水力的電動機所驅動。(圖3)刀鼓寬度為100mm,外徑精選360mm。刀鼓上面有13個采擷。力矩由安放在水力電動機上的力臂測量。推力由應變儀測量。刀鼓的旋轉速度:400rpm,供給量;30mm/s,深度:40mm。 圖4 圖5 結果和討論:磨耗測試:圖4顯示了切割剛玉砂輪時TSDC和WC磨耗系數。正如期望的那樣,WC的磨耗系數大于TSDC的磨耗系數。顯然在TSDC曲線和WC之間的缺口與切距迅速增加。在早期,WC的磨耗系數大約是TSDC的14倍。僅在1500米,WC的磨耗系數超過400倍的TSDC的磨耗系數。WC的磨耗實驗不得不在這個時期結束。有兩個重要的因素可以解釋這種行為。第一,如圖5所示。TSDC的推力隨著切距的增加而稍微增加,而WC的推力在大約16次切割后迅速減小。第二,行為的差別可能與兩種材料硬度的溫度靈敏度有關。切口的升溫已經由尺寸的分析得到6,7。以多種工作材料的試驗數據為依據,在切口處的平均升溫被給出:(1) 這里u是操作的具體能量,Nm/mm3。V:切割速度,m/s。f:每次的供給量(m)。c:工作材料的體積的比熱,J/mm3 C,在這個例子中,砂輪; 千噸: 輪子的熱擴散率, m2/s。在TSDC和WC工具分析中,切割速度,供給量,和車輪體積的比熱被恒定保持。因此,切口處的平均溫度的差別最有可能來源于切割的具體能量的差別。圖6TSDC和WC的具體能量如圖6所示。似乎在初始階段,WC的具體能量微高于TSDC,而隨后在切割時期,WC的具體能量足夠高于TSDC。從方程式3看出,預計WC接口處上升的溫度將遠遠高于TSDC,因此硬度的顯著下降將由WC切割因素的接觸層預計出來。8方程式1和2預計切割速率隨著硬度的下降而增加,因此與TSDC相比較,這種影響將相當有助于WC磨耗系數的增高。圖7圖8圖9圖10圖7顯示新的WC和TSDC元素,和磨耗測試后,磨損平臺在它們身上的發展??梢郧宄乜匆?,雖然TSDC已經切割的距離比WC大得多,但是它的磨損平臺發展比WC小得多。磨損平臺區域和WC推力,TSDC的切距分別顯示在圖8和圖9.在比較圖8和圖9時,應該注意到磨損平臺的趨勢和推力非常相似。當切口變大時,TSDC的磨損稍微增加,推力也隨之稍微增加。相反,WC的磨損迅速增加,推力也隨之迅速增加。這表明推力的增量取決于磨損的增量。圖10顯示了推力忽然磨損的關系,體現了這些參量之間較強的作用。圖11巖石切割測試:巖石切割測試后,WC和TSDC的采擷被檢測,TSDC的采擷沒有明顯的磨損。相反,WC的采擷技巧已經降低,大量磨損已經增加(圖11)。圖12顯示了切割期間TSDC和WC采擷的力矩價值,通過測試可以看出,TSDC采擷的平均力矩只顯示了一點變化,而WC采擷的力矩在切割期間大約增加50%。圖13顯示了巖石切割期間TSDC和WC采擷的推力。在測試中,TSDC采擷的推力只是稍微地增加,而WC采擷的推力在切割過程中迅速地增加。 圖12 圖13通過比較圖12(b)和圖13(b),顯而易見,切割過程中,推力的增加頻率遠遠超過力矩的增大頻率。此種現象可能可能存在兩個原因。首先,對于工具磨損來說,切割力比推力較不敏感9-11.換句話說,特定的工具磨損,切割力的增量小于推力的增量。力矩是由鼓的切割力和半徑得出來的(采擷技巧)。其次,切割力由兩部分組成:一部分負責芯片形成,一部分克服摩擦。前一部分與切割條件有關系,就像切割的深度。而后一部分與工具磨損有關系。在兩個相反機制中,工具的磨損影響著切割力。一方面,當工具磨損增大,切割的深度反而減小,切割力減小。另一方面,當工具的磨損增大,摩擦力隨之增大,切割力增大。因此,當工具磨損增大,切割力是否增大或減小取決于哪種機制占優勢??偨Y1在早期,WC的磨耗系數大約是TSDC的14倍。僅在1500米,WC的磨耗系數超過400倍的TSDC的磨耗系數。這是因為切割過程中WC切割元素的推力和溫度迅速增加。2 推力和磨損面積的關系很密切。早期,磨損面積小,推力也相應??;當磨損面積增大,推力增加??梢杂^察到,不同的工具材料,不同的磨損面積增大程度,推力的增量也不同。3 TSDC采擷的巖石切割優于WC采擷的巖石切割。同樣的切割條件下,WC采擷顯示了大量的工具磨損,TSDC采擷沒有明顯的顯示。作用在切削刀鼓上的推力,WC采擷足夠高于TSDC采擷。4 刀具磨損以兩種相反的機制影響著切割力。當工具磨損增加,切割深度降低,導致切割力下降。然而,由于工具磨損,摩擦力增大,切割力也相應的增大。因此,切割力增大或者減小取決于哪種機制占優勢。作者:X. S. Li, J. N. Boland and H. Guo.工作于CSIRO勘探開采。郵編883,肯摩爾昆士蘭4069,澳大利亞。作者要感謝Peter Clark在設計,制造磨損試驗臺和實驗技術提供發面做出的努力。也感謝Craig Harbers和Michael Cunnington在貫徹和落實切割試驗中提供的幫助。此篇文章是2007年4月19日,意大利羅馬舉行的第二屆國際工業金剛石會議中提交的論文,在鉆石有限公司的友善許可下被打印出來。參考:1 司法機構政務長和J.A.Martin和R.J.Fowell, 集中研究工具的磨損和巖石的切割.2 J.N.Boland和X.S.Li,H.等人研究磨損,金剛石化合物的切割.3 P. Larsson, N. Axen, T. Ekstrom, 等人研究一種新的金剛石磨損.4 I.M.Hutchings, 研究工程材料的摩擦和磨損.5 司法機構政務長J. A. Williams, 磨損模型的分析,計算和繪圖。采用介質力學的方法.6 N. Cook, 研究工具的磨損和工具的壽命.7 L. J. Yang,測定碳化鎢的磨損系數.8 G. S. Upadhyaya, 研究硬質合金鎢.9 X. S. Li和I. M. Low, 研究切割工具的切割力,關鍵的工程材料.Oil&gas51INDUSTRIAL DIAMOND REVIEW1/08Rock cutting tools have traditionallybeen based on tungsten carbides(WC).WC tipped picks have been widelyemployed as the cutting tools on tunnellingmachines and shearer drums for severaldecades.They have proven effective andadequate in most coal measures andsoft rocks,but are less successful andunsuitable as the rock hardness andespecially abrasiveness increase 1.Tocut hard and abrasive rock,one of thesolutions is to replace WC with diamondcomposite.The major improvement inperformance of diamond compositematerials has been the change in thebinder component from metallic cobaltto ceramic SiC,whether SiC is producedby reactive bonding during sintering oras an original component to the sinteringoperation.This kind of diamond compositeis known as thermally stable diamondcomposites(TSDC)2,3.One of the objectives of this work is toassess the wear characteristics of a TSDCcutting element.Various parameters maybe used to represent the wear behaviourof materials,but the wear coefficient isone commonly measured.The wearcoefficient given in the Archard wearequation 4 is:(1)where Qtotalis the volume of materialremoved during the wear test,P the load,s the cutting length and H the surfacehardness of the wear material.Thedimensionless constant K is the wearcoefficient.When interpreting experimentalresults,the hardness of the material at thecontact interface may not be known withany certainty.A more useful parameteris the ratio K/H or k this is known asthe dimensional wear coefficient 5(mm3/Nm).For known values of Qtotal,P,and s,k is given by:(2)Another objective of this work is toevaluate and compare the cuttingperformance of both WC and TSDC cuttingelements in a block of WondabyneSandstone(UCS 120 MPa)mounted onCSIROs rock cutting rig.Experimental detailsWear test:The wear tests were carried out on apurpose-built wear test rig(Fig 1).Thesample was fastened into the tool holderand fed across the surface of the rotatinggrinding wheel at a preset depth of cut.Thethrust and cutting forces(see Fig 2)acting onthe element were measured by load cells.A series of wear and rock cutting tests was undertaken using thermally stablediamond composites(TSDC)and tungsten carbide(WC)tools.The wear testswere conducted on a purpose-built,wear test rig in which a rotating aluminiumoxide grinding wheel is machined by the cutting tool element.The rock cuttingtests were performed on a modified linear planer.The thrust and cutting forcesacting on the cutter drum laced with the tools were measured during these tests.The wear coefficients of both materials were used to evaluate wear performancewhile cutting performance was assessed by tool wear and the rates of increasein forces with cutting distance.It was shown that the wear coefficient of a WC cutting element was significantlyhigher than that for a TSDC element.The cutting performance of TSDC pick wasmuch better than that of WC pick.Under the same cutting conditions,the thrustforce on the WC pick was significantly higher than that on the TSDC pick.Theexperimental results indicate that TSDC can be applied as an effective tool forcutting hard and abrasive rocks.This paper by X.S.Li,J.N.Boland and H.Guo.A comparison of wear andcutting performance betweendiamond composite andtungsten carbide toolsFig 1 A general view of wear test rigRotationdirection ofgrindingwheelThrustforceCuttingforceFig 2 Forces acting at the tool tipThe signals from the load cells werelogged via a National Instruments signalconditioning system(NI-SCXI)with anadjustable gain and recorded on apersonal computer running under NIsLabVIEW platform.A vitrified bonded alumina grindingwheel(UCS 120 MPa,cerchar abrasivityindex 3.54,porosity 42%,Al2O3grainsize 400 m)of standard manufacturewas chosen for the wear tests.The initialdimensions of the wheel were 350 mm(external diameter)x 50 mm(internaldiameter)x 50.8 mm(width).A TSDCelement(16x20,density 3.4158 g/cc)anda standard,rock-grade tungsten carbide(WC)cutting element(12x22.5,density14.7070 g/cc)were used for the tests.Thetesting conditions were:wheel rotationalspeed:479.5 RPM,depth of cut:0.25 mm,feed rate:1.22 mm/rev,testing environment:dry.Each element was weighed beforeand after the wear test using a balance(METTLER AE200)with an accuracy of0.0001g.From the weights of the elementbefore and after the test,as well as itsdensity,the volume loss of the elementcan be calculated.The wear test on TSDCelement was conducted with 100 cuts(one pass across the wheel correspondsto one cut).However,for WC the wearrates were so high that the test wasterminated before reaching 100 cuts.Rock cutting test:The rock cutting tests were performed ona modified planer machine.The planeroperations were controlled by a computer.The linear cutting speed(or rock feedrate)was software-adjustable between0.1 and 2.5 m/s.The cutting stroke couldbe varied up to 3 m.The tests wereperformed on Wondabyne Sandstone(UCS:120 MPa,Cerchar abrasivity index:2.7).The dimensions of the blocks were1800 x 450 x 450 mm.The TSDC and WCcutting elements were inserted in standardsized rock cutting pick bodies.The cutter drum is mounted on the planerscrosshead and is driven by a 50 kW hydraulicmotor(Fig 3).The drum width was 100 mmwith an outer diameter at the pick tips of360 mm.There were 13 picks on the drum.Torque was measured by a torque armmounted on the hydraulic motor.The thrustforce was measured by strain gaugesinstalled on bearing holders.The rotationspeed of the drum was monitored by ashaft encoder.The testing conditions were:the rotation speed of the drum:400 rpm,the feed rate:30 mm/s,depth:40 mm.Results and DiscussionWear test:Fig 4 shows the wear coefficients ofTSDC and WC when cutting the corundumgrinding wheel.As expected,the wearcoefficients for WC were much greaterthan for TSDC.It can be seen that the gapbetween the curves for TSDC and WCincreased rapidly with cutting distance.In the very early stages,the wear coefficientof WC was about 140 times that TSDC.At only 1500 m,the wear coefficient of WCwas more than 400 times that of TSDC the wear test on the WC had to beterminated at this stage.There are twosignificant factors that may account forthis behaviour.Firstly,as shown in Fig 5,the thrust force of TSDC increased slightlywith the increase of cutting distance whilefor WC the thrust force rose sharply afterabout 16 cuts.Secondly the difference inbehaviour may be related to the temperaturesensitivity of the hardness of the twomaterials.The rise in temperature at thecutting interface has been derived fromdimensional analysis 6,7.Based onexperimental data for a variety of workmaterials,the mean temperature rise atthe cutting interface,C is given by:(3)where u is the specific energy of theoperation,Nm/mm3;V:cutting speed,m/s;f:feed rate per revolution,(m);c:volumetric specific heat of the workmaterial:J/mm3C,in this example,thegrinding wheel;kt:thermal diffusivity ofthe wheel,m2/s.In this analysis of TSDC and WC tools,the cutting speed,feed rate and volumetricspecific heat of the wheel were keptconstant.Therefore any difference in themean temperature rise at the cuttinginterface would mostly likely arise fromthe difference of specific energy of cutting.The specific energies for TSDC and WCare shown in Fig 6.It can be seem thatin the initial stages,the specific energyFig 4 Wear coefficients of TSDC and WC900800700600500400300200100010005001500 2000250030003500400045000Wear coefficient x10-6(mm3/Nm)Cumulative cutting distance(m)242.9404.6606.0852.51.71.8 1.6 2.02.62.41.3TSDCWCFig 5 The thrust forces of TSDC and WC10009008007006005004003002001000-10020015010050250 300 350 400 450 5000Thrust force(N)Time(s)10009008007006005004003002001000-100400200600 800 1000 1200 1400 16000Thrust force(N)Time(s)Fig 3 Set up of rock cutting testCutter drumRockHydraulic motorINDUSTRIAL DIAMOND REVIEW1/0852Oil&gasfor WC was slightly higher than that forTSDC,while in the later cutting stage thespecific energy for WC was significantlyhigher than for TSDC.From Equation 3,it is expected that the temperature riseat the interface for WC would be muchgreater than for TSDC and hence asignificant drop in hardness would bepredicted for the contact layers of the WCcutting element 8.Equations 1 and 2predict an increase in wear rate with fallinghardness and hence this effect wouldcontribute significantly to the higher wearcoefficients of WC compared with TSDC.Fig 7 shows the new WC and TSDCelements and wear flats developed onthem after the wear tests.It can clearlybe seen that although the TSDC had cutmuch a greater distance than the WC,itswear-flat development was much smallerthan that of WC.The areas of wear flatand thrust forces of WC and TSDC versuscutting distance are shown in Figs 8 and9 respectively.By comparing the Figs 8and 9,it should be noticed that the trendsfor the wear flat and thrust force werevery similar.As cutting progressed,thewear flat for TSDC increased slightly,and so too did the thrust force.In contrastthe wear flat for WC increased rapidlywith a matching increase in the thrustforce.This indicates that the increase inthrust force is due to the increase of areaof wear flat.The relation between thethrust force and the wear flat area isshown in Fig 10 where there is a strongcorrelation between these parameters.Rock cutting test:The picks of WC and TSDC wereexamined after the rock cutting tests.No obvious wear was identified on TSDCpicks.In contrast the tips of WC picks hadworn down and a large wear flat haddeveloped(Fig 11).Fig 12 shows the torque values forTSDC and WC picks during cutting.Itcan be seen that the average torque forTSDC picks showed little variationthroughout the test,while the torque forWC picks increased by approximately50%during the cutting process.Fig 13 shows the thrust forces on TSDCand WC picks during the rock cutting.Thethrust force for TSDC picks increasedonly slightly during the test,but with theWC picks it increased rapidly during thecutting process.By comparing Fig 12(b)with Fig 13(b),it is clear that the rate of increase in thethrust force was significantly greater thanFig 8 Areas of wear flat of TSDC and WC versus cutting distance12010080604020010005001500 2000250030003500400045000Area of wear flat(mm2)Cumulative cutting distance(m)TSDCWCFig 10 The relation between the thrust force and area of wear flat800700600500400300200100040206080100y=6.233x+38.396R2=0.9885y=11.525x+119.38R2=0.75031200Thrust force(N)Area of wear flat(mm2)TSDCWCFig 9 Thrust forces of TSDC and WC during the wear test800700600500400300200100010005001500 2000250030003500400045000Thrust force(N)Cumulative cutting distance(m)TSDCWCFig 7 The development of wear flats of WC and TSDC elements after the wear testsFig 11 The development of wear flats of WC and TSDC picks after one rock cutting test20015010050250 300 350 400 450 5000Time(s)4.54.03.53.02.52.01.51.00.50400200600 800 1000 1200 1400 16000Specific energy(Nm/mm3)4.54.03.53.02.52.01.51.00.50Specific energy(Nm/mm3)Time(s)Fig 6 The specific energies of TSDC and WCOil&gas53INDUSTRIAL DIAMOND REVIEW1/08that of the torque during the cuttingprocess.There may be two reasons forthis.Firstly the cutting force is lesssensitive to tool wear than the thrustforce 9-11.In other words,for a giventool wear the increase of the cuttingforce is smaller than that of the thrustforce.Torque is the product of cuttingforce and radius of the drum(to the tipof the picks).Secondly the cutting forceconsists of two components:onecomponent responsible to the chipformation and a component to overcomethe friction.The former component isrelated to the cutting conditions,such asdepth of cut,while the latter componentis related to tool wear.The tool wearaffects the cutting force in two contrastingmechanisms.On the one hand as thetool wear increased,the preset depth ofcut is reduced which in turn would reducethe cutting force.On the other hand asthe tool wear increased,the frictionalforces would increase which would thenincrease the cutting force.Therefore asthe tool wear increases,the cutting forcemay increase or decrease depending onwhich mechanism is dominant.Conclusions1The wear coefficient of a WCcutting element was significantlyhigher than that for a TSDC element.In the very early stages,the wearcoefficient of WC was about 140times greater than for TSDC.Withfurther testing the wear coefficientof WC increased very rapidly to 400 times greater than for TSDCafter only 1500 m.This is becausethe thrust force and temperature of WC cutting element increasedrapidly in the cutting process.2Thrust force correlates closely with the wear flat area on the testelements.Thrust force is relativelysmall in the initial cutting stageswhen the wear flat area is alsosmall;it increases as the wear flatarea increases.It is observed thatthe rate of increase in the thrustforce is different for different toolmaterials depending on the rate of increase in the wear flat area.3The rock cutting performance ofTSDC picks was much better thanthat of WC picks.Under the samecutting conditions,WC picks showedsevere tool wear,while no obviouswear was identified on TSDC picks.The thrust force on the cutter drumlaced with WC picks was significantlyhigher than that observed whenlaced with TSDC picks.4The tool wear affects the cuttingforce in two contrasting mechanisms.As the tool wear increases,thepreset depth of cut is reducedwhich causes the cutting force todrop.However,as the tools wear,the frictional forces increase with a corresponding increase in thecutting force.Therefore the cuttingforce may either increase ordecrease depending on whichmechanism is dominant.8007006005004003002001000-1005001000150020000Torque(Nm)Displacement(mm)8007006005004003002001000-1005001000150020000Torque(Nm)Displacement(mm)40353025201510505001000150020000Thrust force(kN)Displacement(mm)40353025201510505001000150020000Thrust force(kN)Displacement(mm)Fig 12 Torques of TSDC and WC picks duringthe rock cuttingFig 13 Thrust forces of TSDC and WC picksduring the rock cuttingAuthors:X.S.Li,J.N.Boland and H.Guo work forCSIRO Exploration and Mining,PO Box 883,Kenmore QLD 4069,Australia.AcknowledgmentsThe authors would like to thank Peter Clarkfor his effort in the design and constructionof the wear test rig and technical support incarrying out the wear tests.Thanks also goto Craig Harbers and Michael Cunningtonfor their assistance in carrying out the rockcutting tests.This article is based on a paper presented at the 2nd International Industrial DiamondConference held in Rome,Italy on April 19-202007 and is printed with kind permission ofDiamond At Work Ltd.References1J.A.Martin and R.J.Fowell,FactorsGoverning the Onset of Severe DragTool Wear in Rock Cutting,Int J RockMech Min Sci,1997,34,p 59-69.2J.N.Boland,X.S.Li,H.Alehossein,et al,Abrasive Wear Behaviour of DiamondComposite Cutting Elements,Intertech2003,July 28-August 1,Vancouver,Canada,2003,Proceedings CD.3P.Larsson,N.Axen,T.Ekstrom,et al,Wear of a New Type of DiamondComposite,Int J Refractory Metals&Hard Materials,1999,17,p 453-460.4I.M.Hutchings,Tribology:Friction and Wear of Engineering Materials,Oxford:Butterworth-Heinemann Publ.,2001,p 273.5J.A.Williams,Wear Modelling:Analytical,Computational andMapping:a Continuum MechanicsApproach,Wear,1999,225-229,p 1-17.6N.Cook,Tool Wear and Tool Life,ASME Transactions,J Eng Ind,1973,95(11),p 931-938.7L.J.Yang,Determination of the WearCoefficient of Tungsten Carbide by aTurning Operation,Wear,2001,250,p 366-375.8G.S.Upadhyaya,Cemented TungstenCarbides,New Jersey:NoyesPublications,1998,p 196-197.9X.S.Li and I.M.Low,Cutting Forces ofCeramic Cutting Tools,Key EngineeringMaterials,1994,96,p 81-136.10 L.Gould,Sensing Tool and DriveElement Conditions in Machine Tools,Sensor 1988,p 5-13.11 E.Dimla and Snr Dimla,Sensor Signalsfor Tool-Wear Monitoring in MetalCutting Operations-a Review ofMethods,Int J of Mach Tools andManu,2000,40(8),p 125-138.INDUSTRIAL DIAMOND REVIEW1/0854Oil&gas
收藏