動態建模與主動轉向系統轉向性能的分析外文文獻翻譯、中英文翻譯
動態建模與主動轉向系統轉向性能的分析外文文獻翻譯、中英文翻譯,動態,建模,主動,轉向,系統,性能,分析,外文,文獻,翻譯,中英文
第1章 外文翻譯1.1中文翻譯動態建模與主動轉向系統轉向性能的分析高振海 , 王軍 , 王德平 吉林大學 ,130025changchun 摘要 建立行星齒輪組和舵機的運動學模型,是基于傳輸機制的角度疊加與主動前輪轉向系統的分析 ??刂破鞯目勺冝D向比對于主動前輪轉向系統來說是有要求的,并在汽車制造商的道路仿真環境中進行虛擬道路測試。模擬測試的結果驗證了控制器的性能和可變轉向比函數,數據還顯示由于主動前輪轉向系統可隨著駕駛情況的變化而改變,從而提高了在低速下駕駛的舒適性。1、介紹 汽車轉向系統在汽車操縱和提高汽車穩定性能中起到重要作用。在過去的一百年里,轉向系統的發展經歷了許多階段,線控轉向系統是轎車轉向系統中最先進的轉向系統。但是,這種線控轉向系統并未得到大眾消費者的接受和達到國家的規定許可,其系統的安全性和可靠性還在考慮和解決當中。主動轉向系統是一個應用于寶馬轎車的新的汽車轉向技術,由司機操縱方向盤來實現電控控制轉向疊加角。但是,方向盤與輪胎之間仍然是固定的機械連接。彎道輔助照明系統優先根據駕駛員的駕駛情況依靠車輪轉角的變化來調整車輛的整體性能,這避免了人們對線控轉向系統操控性能的擔心。在世界各地,許多關于汽車轉向系統的研究實驗正在火熱地進行著。但絕大部分的實驗研究都是圍繞車輛的穩定性這個主題來展開,例如車輛的彎道輔助照明系統等。彎道輔助照明系統作為主動轉向系統的基本功能,駕駛員能最先體驗到其可變轉向比函數的作用和感覺到轉向輕便性的提高。彎道輔助照明系統能使轉向比根據汽車的運動狀態而改變其工作動態,因此,彎道輔助照明系統提高了在高速或低速情況下車輛穩定性的可操縱性。車輛性能的改進與主動轉向系統的穩定性的提高在一定程度上取決于轉向機構傳動比的質量的變化。因此,它對于可變轉向傳動比函數來說是很重要的。所以我們建立了以主動轉向系統為主的行星齒輪機構的動態模型和轉向角輸入系統模型。此外,汽車制造商也成功進行了一些典型的測試。2、主動轉向系統的模型 與傳統的機械轉向系統相比,除了主要的機械轉向系統外,主動轉向系統由一個雙行星齒輪和電動執行機構電動機組成。因為從方向盤到車輪的所有鏈接都是機械鏈接,所以彎道輔助照明系統的可靠性和安全性是不容置疑的。彎道輔助照明系統可以確保車輛的行駛性能完全由駕駛員操控,使司機有明確的道路感覺。彎道輔助照明系統的行星齒輪有兩個自由度(DOF),行星齒輪的輸出端連接到轉向器的小齒輪,一個輸入端連接方向盤,另一個輸入端連接電動馬達執行機構,如圖1所示: 圖1: (a)AFS系統的示意圖;(b)行星齒輪組和電動馬達的三維模型舵機的小齒輪角V是依賴在方向盤角S和電動機角M的, 還有一個非線性關系面前的平均車輪轉向角f和齒輪角V。因此,當給予手方向盤角S一定的力前輪角f依靠齒輪角V隨著電動機角M發生改變而變化,這就是可變轉向傳動比的功用11。上面的關系顯示如下: V表示轉向器的齒輪角,S為方向盤轉角,M為電動機轉角,f為平均前車輪角,iS 為方向盤轉角對于轉向器齒輪角的轉換系數,iM為電動機轉角到轉向器齒輪角的轉換系數,F()為非線性關系面前的平均車輪轉向角f和齒輪角V,i為主動轉向系統的轉向比,i=S / f 。(1) 行星齒輪的模型主動前輪轉向系統主要是由一個齒輪齒條轉向系統、一個雙行星齒輪、電動執行器電機、一個蝸桿齒輪、電磁鎖單元保證相關故障的安全和一個電子控制單元為樞紐組成。手控方向盤與連接太陽齒輪一,太陽齒輪一齒合著行星齒輪一,同時,轉動的電動機傳送到行星架的蝸輪,然后行星架角與行星一在齒輪轉動下和行星齒輪二旋轉,行星齒輪二與太陽齒輪二相互齒合,太陽齒輪二與轉向齒輪的小齒輪二連接牢固,最后運動轉移到前方的路輪通過轉向器和轉向齒輪與車輪之間的連接。每個行星齒輪一和行星齒輪二牢固接合,所以每一個行星齒輪和行星齒輪二同步轉動,蝸桿齒輪連接電機轉子,蝸桿齒輪和行星架是整合成一個部分,如圖所示圖2。圖2:(a)行星齒輪組和電動馬達的三維模型; (b)行星齒輪組的結構如果系統關閉,蝸桿磨損將被鎖定以保證安全不出故障。在這一情況下驅動程序能夠進一步轉向以恒定的轉向比像一個傳統的轉向系統。因此,系統的安全得到保證。圖2(乙)顯示行星齒輪的機械裝置,AFS的核心。太陽齒輪一,太陽齒輪二和行星架的角速度分別表示為c, a, H,行星齒輪的自轉角速度表示為 p,我們認為,太陽齒輪角速度和方向盤的角速度相等,行星架的角速度和通過電機的蝸輪的角速度相等,太陽齒輪二的角速度和轉向齒輪的角速度相等。彈性變形的轉向機構,速度波動的調節所造成的非等速通過連接器是不考慮在內的。上述關系描述為:iw表示蝸桿齒輪比。以分析太陽輪I對于行星齒輪I、行星架對于太陽輪II的傳動為基礎,我們可以推斷出轉向器的小齒輪角V、方向盤轉角S和電動機轉角M之間的關系。我們從行星齒輪I和II推斷出兩個方程:c表示度太陽齒輪I的角速,a為太陽齒輪II的角速度,H為行星架的角速度,p為行星齒輪的旋轉角速度、Rc為太陽齒輪I節圓半徑、Rf為行星行星齒輪I的節圓半徑,Ra為太陽齒輪II節圓半徑,Rg為行星齒輪II的節圓半徑。方程(7)是由(5)、(6)推出。方程(8)是由(4)和(7)推出。初始狀態是零: 可以推斷從(8)和(9):3.模擬結果分析 在論文中,我們依據車輛速度提出了用一個簡單的轉向比來驗證函數變量轉向比率,見圖3。轉向比分為三部分,在低速轉向比設置到最低imin、在高速度轉向比設置為最大的imax、在正常速度下轉向比率呈線性增長。轉向傳動比的定義如下: 圖3:車速與轉向齒輪速比的關系 基于上述分析,該模型建立仿真軟件和根據變量轉向比函數而設計的PID控制器。模擬是基于德國IPG公司的車輛動力學仿真軟件、車輛動力學仿真軟件包括車輛模型、道路模型和驅動模型,所有的部件建立一個虛擬仿真和測試環境。在本文中,除了轉向系統外其他的車輛模型都采用了車輛動力學仿真軟件里原始的車輛模型。(1)靜態轉向試驗靜態轉向性能主要代表了車輛轉向的輕便性。因此靜態轉向試驗是一個測試轉向系統性能的基本的實驗。方向盤轉角輸入是兩個0.2赫茲的正弦周期,270度,見圖4(a)。圖4(b)演示了靜態轉向仿真的結果。結果表明,安裝了彎道輔助照明系統的車輛的前輪轉角比沒有安裝的角度要大,也就是說,在靜態和較低的速度下彎道輔助照明系統將更直接。主動前輪轉向系統能讓測試車輛的最大方向盤轉角從1.3減少到0.75轉。 圖4:(a)方向盤角的時間歷程; (b)有AFS的前輪角與沒有AFS的比較 圖5:(一)轉向盤轉角和前輪角度回轉試驗;(b)車輛的蛇行試驗。(2)蛇形試驗蛇形測試試用于檢查較低的速度下車輛的轉向性能。該模式的試驗路顯示在圖5(b)。L = 36米, 車輛速度是30公里/小時。圖5(a) 仿真結果顯示: 如果進行蛇形試驗, 不管汽車是否裝配有主動前輪轉向系統,前輪轉角幾乎是相同的,但車輛轉向盤轉角甚至要小于沒有安裝AFS的。在這種情況下,當車速在0-30km / h時車輛的AFS可以阻隔轉向盤轉角大約40%。所以特別是在蜿蜒的道路上車輛的AFS讓司機更容易處理道路情況。4、結論 通過分析寶馬的主動前輪轉向系統的結構, 主動前輪轉向系統模型已經完成, 這包括了行星齒輪模型和轉向裝置模型。在考慮了車輛轉向靈敏度和可操作性后,提出了一個簡單的線性轉向比。在動態仿真模型中PID控制器的變量轉向比函數是設計好的。仿真測試是在車輛動力學仿真軟件中進行驗證變量轉向比函數的。結果證實,AFS可以提高特別是提高低速車輛可操作性。確認本文是由中國的自然科學基金會(50975120)提供、新世紀優秀人才大學(ncet - 08 - 0247)和863年基金會(2006 aa110102)編輯,中華人民共和國。引用1 P. Koehn,主動轉向-寶馬對現代轉向技術的方法、SAE國際,卷。2004。2 W. Klier主動前輪轉向(第1部分):數學模型和參數估計、工程、卷。2004。3 C. Deling and Y. Chengliang,基于狀態觀測主動前輪轉向的研究,中國機械工程、第18卷,2007年,頁3019 - 3023。4 X. Sun and J. Zhao、主動前輪轉向系統的設計、拖拉機和農用運輸車,卷。35歲,2008年,頁91 - 94。5 J. Guo, J. Li,和 Y. Li,綜合控制的主動前輪轉向和防抱死制動系統的研究、汽車技術,2007,pp。4 - 8。6 Z. Yu, Z. Zhao, and H. Chen,主動前輪轉向對車輛操縱穩定性能的影響、中國機械工程,2005卷。16日,頁652 - 657。7 Q. Li, G. Shi, Y. Lin、主動前輪轉向控制技術的現狀和前景的研究、汽車工程卷。31 2009,頁629 - 633。8 B. Lee, A. Khajepour, and K、通過集成主動轉向和差動制動的車輛穩定性、SAE 2006世界大會,2006年4月。9 P.E. Rieth and R. Schwarz,ESC II - ESC主動轉向的干預,SAE國際,2004。10 J. He, D. Crolla, M . Levesley,w曼寧,集成主動轉向和變量扭矩分配控制對提高汽車操縱穩定性的影響、SAE處理,2004年,PA 2004-01-1071。11 W. Reinelt, W. Klier, G. Reimann, and W. Schuster, R,主動前輪轉向(第2部分):安全、功能、SAE 2004世界大會,2004年,PA 2004-01-1101。20Available online at www.sciencedirect.comProcedia Engineering 15 (2011) 1030 1035Advanced in Control Engineering and Information ScienceDynamic Modeling and Steering Performance Analysis of Active Front Steering SystemZhenhai Gaoa, Jun Wanga*, Deping WangbaState Key Laboratory of Automotive Simulation and Control, Jilin University, 130025Changchun, ChinabChina First Automobiles Group Corporation, 130011Changchun, ChinaAbstractThe kinematic models of planetary gear set and steering gear are established, based on the analysis of the transmission mechanism of angle superposition with Active Front Steering system (AFS). A controller of variable steering ratio for Active Front Steering system is designed, and virtual road tests are made in CarMaker driver- vehicle-road simulation environment. The results of simulation tests validate the controller performance and the advantage of variable steering ratio function, also show that the driving comfort is improved at low speed especially, due to the Active Front Steering system alters the steering ratio according to the driving situation. 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of CEIS 2011Keyword: Active Front Steering system; steering performance; dynamic model; variable steering gear ratio1. IntroductionThe steering system acts a significant role of making car convenient to handle and enhance the vehicle stability. In the past one hundred years, the development of steering system has experienced many stages, and the Steer-by-Wire system (SBW) is the newest technology of steering system for passenger cars. But the Steer-by-Wire system has not yet accepted by public consumers and permitted by state regulations, in consideration of the reliability and safety of the system. Active Front Steering (AFS) is a newly technology for passenger cars developed by BMW, that implements an electronically controlled superposition of an angle to the hand steering wheel angle that is prescribed by the driver. However, the* Corresponding author. Tel.: +86-431-85094353; fax: +86-431-85682227.E-mail address: wangjunrabbitgmail.com.1877-7058 2011 Published by Elsevier Ltd. doi:10.1016/j.proeng.2011.08.190Zhenhai Gao et al. / Procedia Engineering 15 (2011) 1030 10351035permanent mechanical connection between steering wheel and road wheels remains 1,2. AFS could adjust the vehicle performance by means of intervening the road wheel angle in condition of the driver have top priority, which avoid the peoples concerns about the Steer-by-Wire system.A lot of studies about the active steering system are carried out all over the world. But most of the studies focus on the stability of vehicle, which apply AFS, as in 3-10. As a basic function of active steering system, the driver will experience the variable steering gear ratio function at first, and perceive the improvement of steering portability. AFS enables continuous and situation-dependent variation of the steering ratio according to the vehicles motion state, therefore AFS improve the maneuverability of the vehicle at low speed and the stability at high speed. The performances of stability improvement with active steering system depend upon the quality of variation of the steering ratio to a certain extent. Thence, it is significant to investigate the variable steering gear ratio function. So we established kinematic model of planetary gear set for active steering system and steering system model with angle input, moreover, some typical tests are accomplished in CarMaker.2. Model of active steering systemCompared with traditional mechanical steering system, active steering system is comprised of a double planetary gear and an electric actuator motor additionally, besides the primary mechanical steering system. Because all the links from the steering wheel to road wheel are mechanical, it is indubitable that AFS is reliable and safe. AFS could ensure that the vehicle is under drivers control all the time, and make driver have a clear road feel.The planetary gear of AFS have two degrees of freedom (DOF), the output of the planetary gear connects with the steering gears pinion, and one input connects with the steering wheel, and the other input connects with an electric actuator motor, as shown in Fig.1.Fig. 1. (a) Schematic view of AFS system; (b) 3D-model of planetary gear set and electric motorThe steering gears pinion angle V is dependent up on the steering wheel angle S and motor angle M, and there is a nonlinear relationship between the average front road wheel steering angle f and the pinion angle V . Hence, the front wheel angle f which relies on the pinion angle V would be changed with variation of the motor angle M when given a certain hand steering wheel angle S, such is the function of variable steering gear ratio 11. The above relationships are showed as follow:dV (t ) = iV d S (t ) + iS d M (t ) d f (t ) = F (dV (t )d f (t ) = 1/ i d S (t )(1)(2)(3)Where V denotes the steering gears pinion angle, S the hand steering wheel angle, M the motor angle, f the average front road wheel angle, iS the factor of conversion from hand steering wheel angle to the steering gears pinion angle, iM the factor of conversion from motor angle to the steering gears pinion angle, F() denotes the nonlinear relationship between the average front road wheel steering anglef and the pinion angle V , i is defined as the steer ratio of active steering system, i=S /f .2.1. Model of planetary gearActive front steering system is primarily comprised of a rack-and-pinion steering system, a double planetary gear, an electric actuator motor, a worm gear, an electromagnetic locking unit in case of a safety relevant malfunction, and an electronic control unit as brain. The hand steering wheel connects with the sun gear I, the sun gear I meshes with the planetary gears I, at the same time, the motor rotation is transmitted to the planet carrier by the worm gear, then the planet carrier angle couples with the planetary gears I result in the rotation of the planetary gears II, and planetary gears II meshes with the sun gear II, the sun gear II connect with steering gears pinion solidly, finally the motion transfers to front road wheels through steering gear and the linkage between steering gear and road wheel. Each planet gear I is jointed to planet gear II solidly, so each planet gear I and planet gear II rotate synchronously, the worm is connected with motor rotor, worm wheel and the planet carrier is integrated into one part, as shown in Fig.2.Fig. 2. (a) 3D-model of planetary gear set and electric motor; (b) Structure of planetary gear set.The worm will be locked if the system is shut down and in case of a safety relevant malfunction. In this case the driver is able to further steer with a constant steering ratio like a traditional steering system. Therefore, the safety of system is certified.Fig.2(b) shows the mechanisms of planetary gear, the core of AFS. The angular velocity of sun gear I, sun gear II, and planet carrier are denoted by c, a, H respectively. The angular rotation velocity of planet gear is denoted by p.We assume that the angular velocity of sun gear I equal to the hand steering wheel, the angular velocity of planet carrier equal to motor gained by worm gear, and the sun gear II equal to the steering gears pinion. The elastic deformation of all the steering linkages and the fluctuation of angular velocity caused by non-constant velocity universal joints are not considered in the model. The above relationshipis described as that:d&S = wcd&M / iW = wHd&V = waWhere iw denote the ratio of worm gear.(4)Based on analyzing transmission of sun gear I to planet gear I, and planet carrier to sun gear II, we derived the relationship among the steering gears pinion angle V, the hand steering wheel angle S, and the electrical motor angle M.We infer from motion of planet gear I and II two equations:wc Rc = wH (Rc + Rf ) + wP Rfwa Ra = wH (Ra + Rg ) + wP Rg(5)(6)Where c denote the angular velocity of sun gear I, a the sun gear II angular velocity, H the angular velocity of planet carrier, p the rotational angular velocity of planet gear, Rc the sun gear I pitch radius, Rf the planet gear I pitch radius, Ra the sun gear II pitch radius, Rg the planet gear II pitch radius.Equation (7) is derived from (5) and (6).wa (Ra / Rg ) = wc (Rc / Rf ) + wH (Ra / Rg - Rc / Rf )Equation (8) is derived from (4) and (7).d&V = (Rc Rg / Ra Rf ) d&S + (1 - Rc Rg / Ra Rf ) / iW d&MThe initial state is zero:d&V (0) = d&S (0) = d&M (0) = 0It can be inferred from (8) and (9) that:dV = (Rc Rg / Ra Rf ) dS + (1 - Rc Rg / Ra Rf ) / iW dM(7)(8)(9)(10)3. Simulation and result analysisIn the paper, we have proposed a simple steering ratio dependent vehicle speed to verify the function of variable steering ratio, as shown in Fig. 3. Steering ratio is divided into three parts, steering ratio is set to minimum imin at low speed, steering ratio is set to maximum imax at high speed, steering ratio increase linearly with the speed at normal speed. The steering ratio i is defined like that:Fig.3 Velocity dependent steering gear ratioiminu u1i = (imax - imin )/ (u2 - u1 ) u u1 u u2(11)imaxu u2Based on the above analysis, the model is established in Simulink and a PID controller is designed for variable steering ratio function. Simulations are based on the IPGs CarMaker, CarMaker include vehicle model, road model and driver model, all the parts build up a virtual simulation and test environment. In the paper, vehicle model adopted IPGs CarMaker original vehicle model except steering system.3.1. Static steering testThe performance of static steering mostly represents the convenience of vehicle steering. So the static steering test is a basic test for steering system performance. The steering wheel angle input is two cycles sine of 0.2Hz, 270 degree, as shown in Fig. 4(a). Fig. 4(b) illustrates the result of static steering simulation. The result shows that front road wheel angle of vehicle with AFS is larger than without, that is to say, AFS turn more directly when static and at low speed. Active front steering system makes the maximum steering wheel angle of the test vehicle decrease from 1.3 to 0.75 turns.30300Driver Steer Angle(deg)200100 without AFS (deg)Front Wheel Angle (deg)20with AFS (deg)1000-100-10-200-20-300(a)02468101214time (s)-30(b)02468101214time (s)Fig.4 (a) Time history of steering wheel angle; (b) Front wheel angle with AFS vs without AFS30Steer W heel Angle with AFS(deg) Front W hee l Angle with AFS(de g) Steer W heel Angle without AFS(deg) Front W hee l Angle without AFS(deg)2010Angle (deg)0-10-20-3001020304050time(s)Fig. 5. (a) Steering wheel angle and front wheel angle of slalom test; (b) Pylon Markers of slalom test.3.2. Slalom testThe slalom test is used for examining the vehicle turning performance at low speed. The pattern of the test road is shown in Fig. 5(b). Pylons space L=36m, vehicle speed is 30 km/h.Fig. 5(a) shows the simulation result: In case of slalom test, whether the vehicle assembles active steering system or not, front wheel angle is almost the same, but steering wheel angle of vehicle with AFS is even smaller than without. In this case, vehicles with AFS can cut off the steering wheel angle about 40% at 0-30km/h. So the vehicle with AFS let driver easier to handle particularly on winding path.4. ConclusionBy analyzing the structure of BMWs Active Front Steering System, the active front steering gear model is completed, which includes the planetary gear model and steering gear model. Taking account of the vehicle steering sensitivity and maneuverability, a simple linear steering ratio is proposed. And a PID controller for variable steering ratio function is designed in Simulink. The simulation tests are carried out in CarMaker to verify the function of variable steering ratio. The results confirm that AFS can improve the vehicle maneuverability especially at low speed.AcknowledgementsThis paper is supported by Natural Science Foundation of China (50975120), Program for New Century Excellent Talents in University (NCET-08-0247) and 863 Foundation (2006AA110102), P.R.China.References1 P. Koehn, Active steering-the BMW approach towards modern steering technology, SAE International, vol. 2004, 2004. 2 W. Klier, Active Front Steering (Part 1): Mathematical Modelling and Parameter Estimation, Engineering, vol. 2004, 2004.3 C. Deling and Y. Chengliang, Study on Active Front Steering Based on State-space Observer, China Mechanical Engineering, vol. 18, 2007, pp. 3019-3023.4 X. Sun and J. Zhao, Design of Active Front Steering System, Tractor & Farm Transporter, vol. 35, 2008, pp. 91-94.5 J. Guo, J. Li, and Y. Li, Research on Integrated Control of Active Front Steering and Anti-Lock Braking System, Automobile Technology, 2007, pp. 4-8.6 Z. Yu, Z. Zhao, and H. Chen, Influences of Active Front Wheel Steering on Vehicle Maneuver and Stability Performance, China Mechanical Engineering, vol. 16, 2005, pp. 652-657.7 Q. Li, G. Shi, Y. Lin, and W. Zhao, Status Quo and Prospect of the Research on Active Front Steering Control Technology, Automotive Engineering, vol. 31, 2009, pp. 629-633.8 B. Lee, A. Khajepour, and K. Behdinan, Vehicle Stability through Integrated Active Steering and Differential Braking, SAE 2006 World Congress, April 20069 P.E. Rieth and R. Schwarz, ESC II - ESC With Active Steering Intervention, SAE International, 2004.10 J. He, D. Crolla, M. Levesley, and W. Manning, Integrated active steering and variable torque distribution control for improving vehicle handling and stability, SAE transactions, 2004, PA 2004-01-1071.11 W. Reinelt, W. Klier, G. Reimann, and W. Schuster, R, Active Front Steering(Part 2): Safety and Functionality, SAE 2004 World Congress, 2004, PA 2004-01-1101.
收藏