物流自動導引小車(AGV)的設計(含CAD圖紙)
喜歡就充值下載吧,資源目錄下展示的全都有,下載后全都有,dwg格式的為CAD圖紙,有疑問咨詢QQ:414951605 或1304139763= 喜歡就充值下載吧,資源目錄下展示的全都有,下載后全都有,dwg格式的為CAD圖紙,有疑問咨詢QQ:414951605 或1304139763=
蘇州科技學院畢業設計任務書設計題目 物流自動導引小車(AGV)的設計 院 (系) 機械工程學院專 業 機械設計制造及其自動化學生姓名 學 號 起迄日期 設計地點 指導教師 職稱 職稱填寫日期: 2016年1月12日任務書填寫要求1畢業設計任務書由指導教師根據各課題的具體情況填寫,經教研室審查、教研室主任簽字后生效;2任務書內容必須用黑墨水筆工整書寫或按教務處統一設計的電子文檔標準格式打印,不得隨便涂改或潦草書寫,禁止打印在其它紙上后剪貼;3任務書內填寫的內容,必須和學生畢業設計完成的情況相一致,若有變更,應當經過所在專業及院(系)主管領導審批后方可重新填寫;4任務書內有關“院(系)”、“專業”等名稱的填寫,應寫中文全稱。學生的“學號”要寫全號,不能只寫最后2位或1位數字;5在任務書內“主要參考文獻”一欄中,指導教師可列出必讀的參考文獻,但不能給出太多的參考文獻?!爸饕獏⒖嘉墨I”的填寫,應按照國標GB771487文后參考文獻著錄規則(見蘇科教通200695號文件中的附件7)的要求書寫,不能有隨意性;6任務書封面上“起迄日期”是指從畢業設計開始到畢業設計答辯結束為止; 7有關年、月、日等日期的填寫,應當按照國標GB/T 740894數據元和交換格式、信息交換、日期和時間表示法規定的要求,一律用阿拉伯數字書寫。如“2006年9月25日”或“2006-09-25”。1畢業設計任務的內容和要求(包括技術要求、設計條件、工作要求等):1. 課題的意義畢業設計要求學生正確運用和查閱與本課題相關的設計標準、規范、手冊、圖冊等技術資料,獨立地進行理論計算、結構設計、繪制工程圖樣、編寫設計說明書及其相關研究報告,訓練和掌握機械產品設計的基本要求、基本方法、基本步驟,為走向工作崗位打下堅實的基礎。本課題為“物流自導引小車(AVG)的設計”,通過畢業設計,著重了解和掌握物流自導引小車(AGV)設計的控制方案以及小車結構的工藝分析和工藝方案,程序設計控制方案,小車總體結構設計,小車零件的加工和裝配過程,小車運動以及動作原理等內容。設計參數如下: 額定載重量:400N,自重:40N,車體尺寸:600*400停位精度:30mm,最小轉彎半徑:R=710mm運行速度:10-70m/min電池電壓:蓄電池(24伏、48伏及72伏),工作周期:連續工作8小時2任務要求(1) 寫出開題報告;(2) 翻譯資料一份;內容要求與本課題技術領域相關,字數約為5000中文文字的外文資料。(3) 物流自導引小車的總體結構設計以及動作方案設計:整體尺寸,相位轉角,承受載荷能力校核,運行速度,運行效率,運動軌跡動作方案的設計計算等;(4)小車總體結構設計:車體結構方式,裝配方案,卸料,出件方式選擇的確定;(5)小車零件的加工和裝配以及實現:零件的加工,運動動作原理,零件的裝配;(6) 根據理論計算得出的結構參數:采用CAD軟件,完成成套的工裝圖紙,包括裝配圖和部分主要零件圖。要求所繪圖紙總量不少于3張A0。(7)按畢業設計論文撰寫規范要求,撰寫一份50頁以上的畢業設計說明書。3知識體系要求:(1) 熟練掌握機械制圖國家標準規范;設計符合最新國家標準及行業標準;(2) 能正確運用CAD軟件,繪圖要求圖層分明(線型、線寬、顏色的設置);(3) 掌握物流自導引小車設計控制方案、結構設計和零件的加工裝配以及實現等內容;(4) 掌握物流自導引小車設計的一般原則、計算方法和控制過程;(5) 熟悉設計說明書的撰寫規范。2畢業設計應提交的成果(明細列出計算書、設計說明書、圖紙、計算成果、硬件實物、實驗報告及工作過程中應提交的材料等):1開題報告一份;2翻譯資料一份;3所繪制的設計圖紙;4畢業設計說明書一份。5以上資料中具有電子文檔的部分集中刻制的光盤一張。3主要參考文獻:1戴慶輝.先進制造系統M.北京:機械工業出版社,2007.2馮星華.AGV及其控制系統研制電子機械工程J.2001.3賈伯年、俞樸傳感器技術M.南京:東南大學出版社.2007.4王國華現代物流工程M.北京:國防工業出版社,2005.5魯曉春倉儲自動化M.北京:清華大學出版社,2002.6朱曉春先進制造技術M.北京:機械工業出版社,2004.7王耀斌、簡曉春主編.物流裝卸機械M.北京:人民機械出版社,2003. 4畢業設計工作進度安排:(包括序號、起迄日期、工作內容):12016-1-152016-3-10 查閱資料,了解和掌握汽車冷凝器U形架模具設計的的基本原理與結構形式、加工制造工藝、設計方法、生產使用現狀、技術關鍵等內容。撰寫開題報告和翻譯外文資料; 22016-3-112016-3-17 查閱相關資料,確定模具總體設計方案,包括基本原理與組成結構等;32016-3-182016-4-7 查閱相關資料,完成汽車冷凝器U形架模具設計計算;完成模具總體與部件結構設計 ;42016-4-82016-4-30 完成結構部件圖與裝配圖的繪制;52016-5-12016-5-20 撰寫設計說明書,20日上交畢業設計論文初稿。62016-5-212016-6-10 整理完善所有畢業設計文檔資料,上交全部資料的打印稿和刻制光盤的電子稿。 72016-6-112016-6-15 畢業設計答辯準備,參加畢業設計答辯。指導教師簽字: 教研室/系 主任簽字: 年 月 日 蘇州科技學院畢業設計(論文)外文文獻翻譯系 部機械工程學院專 業機械設計制造及其自動化學生姓名學號指導教師職稱2016年 2 月附錄A 外文譯文自動導引車輛在工業環境中的自主導航摘要本文提出的研究方法是解決,在工業環境中使用自動導引車(AGV)導航的問題。工作描述了一個靈活的AGV用于操作部分結構化的倉庫和在地板工廠布局變化頻繁的導航系統。這是通過結合高級的車輛自主權,并通過減少在建立環境的先驗知識情況下,操作者需要人工操作的量而獲得的。AGV的自主化是自動化的任務集,如計劃、感知、拍規劃和路徑跟蹤,工業車輛必須執行,以完成操作員所要求的任務。這些技術的整合,已在一個真正的AGV工作的工業倉庫環境中檢測完成。1. 概況早期的工業自動導引車(AGV)的主要制導系統是埋在地上的一根電線。頻率是通過這個導線使AGV可以檢測和跟蹤它,并通過它的路線。智能設備是在地板上的控制器,它產生沿導線的信號。在這種情況下,AGV作為一種啞設備。AGV系統的下一代,并在微電子和微機的進步和成本降低的推動下,使系統更加智能化,因此他們可以存儲指令的路線,作出決定和參與全球系統的流量控制。此外,新的無線導引系統,利用激光或慣性系統,其允許AGV在沒有物理路徑1情況下運作,即“自由放養”的AGV的 2 ,這使得安裝這樣的系統更容易,也便于在新的站或流量增加時引導路徑的修改。今天,AGV系統被制造商廣泛采用以實施真正靈活的材料處理系統(MHS),這在當今高度自動化的制造模式下往往是必要。靈活的材料處理系統的許可可以用來補償機器故障或產品的變化的替代路線,這使得它們特別適用于季節性和周期性變化。由AGV組成的MHS已經被應用于諸多任務,如倉庫里的產品轉移、分配和存儲功用,或是在生產線的不同組裝站之間的部分運輸。開發一個AGV系統,至少需要滿足以下一些主題:導航與制導、路由、交通管理、負載轉移和系統管理。導航與制導允許車輛遵循著一條路線。路由 3 是車輛能夠決策沿著引導路徑,以選擇最佳路線到達特定的目的地的一種能力。交通管理是避免與其他車輛相碰撞的一個系統或車輛的能力。負載轉移是裝載和交付的一種AGV系統的方法,這可能是簡單的或與其它子系統的集成。管理系統 5 是用來決定系統運行的系統控制方法。目前點對點的AGV導航技術大致可以分為兩組,固定的路徑和開放路徑導航 6 。在這兩種情況下的基本理念是,AGV必須遵循一個固定的導路。雖然其他的技術,如磁性或反射的磁帶上的表面上可以使用,但是固定路徑導航使用是在地板上嵌入式電線的原始想法。在這的情況下,路徑是固定的,且因此,布局的修改意味著停止整個系統和從本身上改變這些路徑。另一方面,導航任務很容易,只需要一個傳感器來檢測地板上的引導。在開放的路徑導航中,AGV至少在理論上可以采取點和點之間任何路徑進行導航。因此,為了在這樣的環境中航行,AGV需要一張地圖和一種知道自己位置的方法。在當前的商業系統中,負載傳輸的路由是在布局流程 1,2的設計過程中預定義,通常情況下,所有可能的路線都存儲在AGV內存中并與環境地圖的結合。當收到指令時,導航系統決定選取了哪個從一點移動到另一點的存儲路線。通常情況下,這是用最短路徑來進行,還可以結合交通協調過程之間的同步多個AGV路徑的使用。但是,這個模型意味著,如果布局被修改,路由必須進行修改。在開放路徑導航的情況下,自由測距的AGV,修改路線意味著計算和編程所有AGV的路徑。如果有很多,雖然在這種情況下,非生產性周期短于固定路徑導航系統,但是這個過程需要停止系統。通常情況下,路徑規劃是在手動控制下重復路線完成的。當有許多AGV時,這個過程變得更大。在其他情況下,編程過程是在一個中心計算機進行然將路線發送給AGV。在任何情況下,如果地板面是大的和負載/卸載點的數目是多的,這個過程是非常耗時的。雖然獲取自主導航系統的大部分關鍵問題,已經在不同情況下由自主系統區和能夠計劃并應對動態不確定環境下的發展系統廣泛地解決,但是在工業領域沒有多少成功如同AGV一樣完全工作的服務機器人的應用實例。集裝箱的室外運輸港口物流自主導航AGV,其沿固定的制導路線。AGV系統的協調問題,同樣考慮固定的制導路線,一直用不同的解決技術。為便于路徑設計,鑒于環境的先驗知識自動計算最短路徑。此外,為了消除在指導基礎設施的依賴,一些AGV樣機結合視覺系統在開放的基礎設施環境中運營,這在一些應用中是不合適或是不可能的。為了解決上述問題,特別是有問題的生產時,受產品需求的變化和季節變化的影響,并增加了傳統的AGV系統的靈活性與自主性。本文提出了一種靈活的AGV系統的成功開發,如下:l 很容易配置和適應地面布局的變化,以減少非生產時間,并在建立的先驗知識的工作場所時,減少體力勞動。l 很容易被命令,有利于任何管理系統的集成。l 通過結合高度自主化的車載裝置,從而提高了靈活性,能夠自動導航到工作場所。l 能夠在工業級精度、重復性和可靠性的部分結構化環境中運行,允許它進行精確的操作,如裝載和交付。論文組織如下。第2部分介紹了柔性材料處理問題,通過開發一個靈活的AGV系統介紹了建議的解決方案。第3部分專注于高等級用于配置、命令、易于規劃AGV的任務的表示。第4部分介紹了導航技術,每形成精確的動作時,AGV將增加靈活性。第5部分介紹了不同的行為,執行不同的任務,如避障和高度精確的路徑跟蹤。第六部分給出了獨立的關鍵性功能和AGV系統的操作在工業倉庫環境中作為一個整體的評估。最后,第7部分給出了一些結論。2.問題和解決方案物料處理的問題包括在不同地點之間的貨物、制造系統、倉庫等如何運輸原材料、部分制造的產品和商品。當運輸是自動化的時候,解決的辦法是通過材料處理系統(MHS),此可根據要求或連續進行操作。根據產品的種類和運輸方式,在市場上有不同的解決方案。例如,我們可以提出皮帶,滾筒和垂直輸送機、升降機、物料搬運機器人和AGV。對于大多數類型的產品來說,帶式輸送機是一種經濟的方法,而滾筒輸送機廣泛應用于運輸普通包裝或固體產品,無論是在水平還是傾斜作業。根據材料的種類和重量,垂直作業由垂直傳送帶、電梯和機械手執行。AGV是特別適合應用在空間是一個溢價和靈活性很關鍵的地方。不同的MHS在于他們的操作方式,系統的配置以及它們的安排方式。圖1展示了這兩種方法都以相同的特定問題的解決方式展現基于傳統AGV 的MHS和建議的方法之間的差異。問題包含相連的六個工作單元,其有托盤進行供給,然后再調度?;趥鹘y的AGV的使用解決方案,如圖1(a),顯示了設計的制導路線如何到達所有工作單元,給出了平面布局,并且考慮車輛的能力,例如,導航和精確進行動作的方式。為了簡化路徑,一些連接通常會被排除,考慮到性能成本,系統通常使用非最優路徑。我們可以觀察到裝載托盤在??奎c6并調度它在??奎c4,AGV應該通過中央點到達目標,因為??奎c4和??奎c6之間的路徑因簡化而被排除。此外,當平面布局修改時,該路徑應重新設計,例如,新的工作臺,障礙等等。該方法是基于一個靈活的AGV的發展,能夠在不同工作地點自由航行,且能夠適應環境的變化,包括用非預期目標和布局的變化?;谝粋€靈活的AGV的使用解決方案,如圖1(b),表明有一個AGV,其對環境有粗略的描述,包括位置工作單元和便于操作的路點。通過開發一個可以對環境描述做出自動化配置并且可以在此工作單元自由航行的AGV,這種MHS解決方案簡單而高效。在前面的例子中,靈活的AGV可以直接導航從??奎c4到??奎c6,因為車上計算的最優路徑考慮到目前環境狀況。此外,為了使系統適應不同的布局,我們只需要提供一個不同工作場所的環境描述。為了發展柔性AGV系統,滿足在上一節中提到的要求,我們實施了一系列的技術集成,其方案如圖2所示。根據他們解決的問題的功能劃分,不同的方法被分為模塊。由模塊提供明確的接口,方便他不同的功能之間的整合。此外,從硬件相關問題到認知問題,根據抽象程度,該模塊集成服從分層組織。該方案可用于開發任何配備了激光掃描儀、激光制導系統和里程計的柔性AGV系統。然而,柔性AGV系統所要求的用于解決不同功能的技術可通過運其他軟件框架進行整合。在這項工作提出的實施中,模塊被組織成如下。虛擬機器人或下層為實際硬件提供了接口。中間層是由感知和控制器模塊組成,分別用來保持一個一致的機器人周邊環境的表示,提供反應型機器人控制。更高一層的對象保持在世界的框架,表示導航模塊,并含決策、規劃模塊,考慮全局和外部信息的感知模塊。在感知模塊有兩個重要的過程:局部障礙模型和位置過濾器。第一個過程是計算和維護一個局部模型的范圍傳感器檢測到的障礙,它被用來檢測危險區域和幫助避障檢測的障礙。第二,位置濾波器集成里程計信息的室內定位系統提供的評估信息。該計劃包括一個單一的來自管理系統的任務,或系統的命令過程,并基于當前位置的車輛拓撲圖生成一個計劃。該計劃被存儲為一個有限狀態機,其中每個狀態是一個給定的任務。如果有任何的任務不能完成,當前的任務將停止并通知管理系統。對于導航,同樣有兩個重要的過程:地圖構建和路徑規劃。第一個集成當前位置和感知生成模糊的網格地圖,這已是自定義修改帳戶的動態工作環境。利用模糊邏輯模型對不同障礙的不確定性進行建模。路徑規劃器連續運行,但其他模塊異步進行。利用三維路徑規劃,得出從AGV位置至所需的目標位置最優路徑??紤]到模糊網格圖的不確定度,修改了三維圖。該控制器還包括一個單一的過程。它依據當前的任務決定執行哪一套行為。有不同的行為,其中最重要的三個是:避障,路徑跟蹤和對接。該方法要求的命令或調度運輸任務是MHS和制造系統的其他部分整合的關鍵點。此外,柔性物流系統的一個重要特征是:他們負責規劃替代路線,可以用來補償意外情況的可能性,比如機械故障或產品需求的變化。為方便與制造系統的集成,AGV系統被設計用于規劃和執行由管理系統調度的任務,并通知任務的成功與否,而管理系統負責當失敗時決策調度和重新規劃。因此,一個合適的支持規劃和重新規劃的形式的使用是最重要的。我們遵循圖3所示的計劃,在這里,生產系統集成了生產,儲存和物料處理系統。制造系統是由一個集成管理器控制,其負責在任務失敗時決策調度和重新規劃等。在生產過程中,工作單元從集成管理器請求材料,決定何時以及如何安排運輸任務。當一個運輸任務不是由MHS正確地完成,集成管理器將被通知以啟動恢復過程(在我們的實施中,它通常發出一個信號給人工操作員)。以下部分表述的是柔性AGV使用的技術,結合了一系列的自動化任務,如計劃、感知、路徑規劃和路徑跟蹤,這是從更高層次的功能,規劃和導航模塊,至較低層的功能,感知和控制器模塊的詳細說明。3.任務和路線規劃為了便于系統的配置和集成,工作場所的代表,指揮AGV用于任務規劃的形式的方式是很重要的。本節介紹了解決這些問題所采用的技術。3.1.場所表示粗略的工作場所的描述用以配置AGV。此描述包含了一個二維的如CAD一樣代表的世界,它指定了環境中最相關的功能:墻壁、反光帶信標的定位系統,區域對接點,裝卸和門。這世界表示為應用程序提供了足夠的信息,但它不能直接用于導航任務。路徑規劃有兩個基本范式:基于網格的范式和拓撲范式。網格地圖的方法,如在14,15的描述中提出了一些問題,所有的時間復雜度和空間復雜度,這是一個困難的任務計劃。另一方面,拓撲圖更緊湊,允許快速規劃和配有高級規劃和交通協調系統的聯合使用。但這種地圖出現其他問題,如在大環境中正確識別的地標或維護。我們不得不面對一個比較大的環境,將其分成幾個區,其中一些通過狹窄的通道和一系列相關的地點相互連接,如??空?。因此,使用這兩種方法是一個合理的解決方案,使用拓撲圖對環境進行高級描述并使用網格地圖用來對當地的環境描述,包括感測障礙。有兩種表示法的聯合使用的以前的作品,在創建地圖的過程進行了研究。在這項工作中,我們注重對地圖的使用,因此我們應用了一種層次視覺如在 13 中介紹的,依據控制架構的等級應用不同的地圖,使用不同分辨率的幾個拓撲圖覆蓋整個地區。多重拓撲表示(MTRS) 18 是由幾個單一拓撲表示鏈接的層次結構組成,其中每一個具有不同的抽象層次。每一個特定的層次過濾掉不相關的方面,組織相關的對象和場所,以及它們之間的關系。抽象層次上的決策取決于目標表示。這種表示的優點之一是,在不同層次的抽象方面,它可以有效地提取信息,這在地理信息系統上已經特別有用。我們使用一個兩級拓撲圖來存儲有關的地方,這些地方是AGV能夠需要達到和表示如何從一些區域或房間移動到另外的地方。這個拓撲圖僅用于高級路由。每個區域或房間,作為一個節點的一級拓撲表示,AGV更新網格地圖的信息從測距傳感器到未建模障礙或環境特征。它后來被用來計算點對點的局部路徑。在第一級拓撲圖中,每個節點代表一個相關區域,通常是一個類似于房間的空間。如果兩個區域之間存在一個門/通道,然后有一個弧之間的節點,代表區。連接節點的弧是有向的和加權的,因此可以使用方向來強制在給定方向上的不同區域的交通和權重用于表示優選的方向。每個弧有一個相關的標簽,它對應于連接兩個區域的通道。此外,一級節點包含一個指針指向一個柵格地圖,它覆蓋了整個區域,開始從二維世界的描述,和一個指向一個二級拓撲圖,其中每個節點代表一個相關的地方。在我們目前的實施中,這些地方是門,等待點,??奎c和方式點。門是用來協助AGV在穿越門和實施閉鎖機制避免兩AGVS同時交叉模擬。等待點定義位置,以阻止機器人充電或服務的目的。該??奎c被用來定義的地方,是用來裝載或卸載。方式點是用來生成一個路徑進行操縱AGV。一個圓弧連接2個地方,這代表機器人可以在這兩者之間進行導航?;∨c第一層映射的方式相同。附錄B 外文原文Autonomous navigation of an automated guided vehicle in industrial environmentsAbstractThe research presented in this paper approaches the issue of navigation using an automated guided vehicle (AGV) in industrial environments. The work describes the navigation system of a flexible AGV intended for operation in partially structured warehouses and with frequent changes in the floor plant layout. This is achieved by incorporating a high degree of on-board autonomy and by decreasing the amount of manual work required by the operator when establishing the a priori knowledge of the environment. The AGVs autonomy consists of the set of automatic tasks, such as planner, perception, path planning and path tracking, that the industrial vehicle must perform to accomplish the task required by the operator. The integration of these techniques has been tested in a real AGV working on an industrial warehouse environment.1. IntroductionThe main guidance system in early industrial automated guided vehicles (AGV) was a wire buried in the floor. A frequency was induced through the wire so that the AGV could detect and follow it, and so be directed through its route. The intelligence was in the floor controller that produced the signals along the wire. In this case, the AGV acts as a kind of dumb-device.The next generation of AGV systems, driven by the advances and costs reduction in microelectronics and microcomputers, made the AGVs more intelligent, and thus they could store instructions about the routes, make decisions and take part in traffic control of the global system. Besides, new wireless guidance systems, using lasers or inertial systems, allowed AGVs to operate without physical guidepaths 1, namely free-ranging AGVs 2, which made the installation of such systems easier and facilitated guide path modifications when new stations or flows were added.Today, AGV systems are widely chosen by manufacturers to implement truly flexible material handling systems (MHS), which are often necessary for the highly automated manufacture model used today. Flexible MHS permit alternative routes that can be used to compensate machine failures or product changes, which makes them especially suitable for seasonal and cyclic variations. MHS composed of AGVs have been used for tasks like movement of products in warehouses, distributions and storage functions or transport of subparts between different assembly stations in a production line.Developing an AGV system requires, at least, catering for some of the following topics: navigation and guidance, routing, traffic management, load transfer and system management. Navigation and guidance allows the vehicle to follow a route. Routing 3 is the vehicles ability to make decisions along the guidance path in order to select optimum routes to specific destinations. Traffic management 4 is a system or vehicle ability to avoid collisions with other vehicles. Load transfer is the pickup and delivery method for an AGV system, which may be simple or integrated with other subsystems. Management system 5 is the method of system control used to dictate system operation.Current point-to-point AGV navigation techniques can be roughly separated into two groups, fixed path and open path navigation 6. In both cases the basic idea is that the AGV has to follow a fixed guidepath. Fixed path navigation uses the original idea of embedded wires in the floor although other techniques like magnetic or reflective tape on the surface of the floor can be used as well. In this case, the paths are fixed and thus a modification of the layout implies stopping the whole system and changing the paths physically. On the other hand, the navigation task is easy, requiring only a sensor to detect the guide on the floor. In open path navigation the AGV can, at least theoretically, take any guidepath to navigate between points. Thus, in order to navigate in this environment, the AGV needs a map and a method to know its own location.In current commercial systems, the routes for load transport are predefined during the design of owpath layout 1,2.Typically, all the possible routes are stored in the AGV memory in conjunction with the map of the environment. When an order is received, the navigation system decides which of the memorized routes to take to move from one point to another. Normally, this is done in terms of the shortest path and it can be combined with the traffic coordination process to synchronise the use of paths between several AGVs. But this model implies that if the layout is modified, the routes have to be modified as well. In the case of open path navigation, free-ranging AGVs, modifying routes implies computing and programming the paths in all the AGVs. If there are many, the process requires the system to be stopped although in this case the non-productive period is shorter than with, fixed path navigation, wire guided systems.Normally the guidepath programming is done by repeating the routes under manual control. When there are many AGVs the process becomes larger. In other cases, the programming process is done in a centralised computer and then the routes are broadcasted to the AGVs. In any case, if the floor plant is large and the number of load/unload points is high, the process is extremely time consuming.Although most of the key issues to obtain autonomous navigation systems have been broadly addressed in different scenarios by the autonomous systems community, developing systems that are able to plan and react to dynamic and uncertain environments, there are not many successful examples of fully working service robots in industrial applications, like AVGs. Outdoor transportation of containers by autonomous AGVs for harbour logistics, navigating along fixed guidepaths, is addressed in 7. The coordination problem of AGVs, also considering fixed guidepaths, has been addressed using different techniques 8,9.To facilitate the guidepath design, automatic calculation of shortest paths considering the a priori knowledge of the environment is addressed in 10. Besides, in order to remove the dependence on guidance infrastructure, which is not suitable or not possible in some applications, some AGVs prototypes have incorporated vision systems for operating in infrastructure-free environments 11.In order to cope with the configurations problems mentioned above, which are especially problematic when production is affected by product demand changes and seasonal variations, and increase the flexibility and autonomy of traditional AGV systems, this work presents the successful development of a flexible AGV system that:l is easily configured and adapted to floor layout changes to reduce non-productive periods and decrease the amount of manual work when establishing the a priori knowledge of the workplace.l is easily commanded, which facilitates integration with any management system.l is able to navigate autonomously through the workplace by incorporating a high degree of on-board autonomy, which increases flexibility.l is able to operate in partially structured environments with industrial grade accuracy, repeatability and reliability that permit it to perform precise manoeuvres, such as pickup and delivery.The paper is organized as follows. Section 2 introduces the flexible material handling problem and describes the proposed solution by developing a flexible AGV system. Section 3 focuses on the high-level representation used to configure, command, and planning the tasks of the AGV easily. Section 4 presents the navigation techniques that the AGV has incorporated for increasing flexibility while performing precise manoeuvres. Section 5 describes the different behaviors for performing different tasks, such as obstacle avoidance and highly precise path tracking. The evaluation of stand-alone critical functionalities and the AGV system operating as a whole in an industrial warehouse environment are presented in Section 6. Finally, Section 7 gives some conclusions.2. Problem and proposed solutionMaterial handling problem consists of how to transport raw materials, partially manufactured products and goods between different locations of manufacturing systems, warehouses, etc.When the transport is automated, the solution is provided by Material Handling Systems (MHS), which can operate continuously or under demand. Depending on the kind of products to handle and the transport to perform, there are different solutions on the market. For instance, we can mention belt, roller and vertical conveyors, elevators, material handling robots and AGVs Belt conveyor is an economical way of conveying most types o product, while roller conveyor is popular for transporting general packing or solid products, both in horizontal and inclined operations. Depending on the type and weight of the material vertical operations are performed by vertical conveyors, elevators and manipulators. AGVs are especially suitable for applications where space is at a premium and flexibility is critical.The different MHS differ in the way they operate, the configuration of the system, and how they are ordered. Fig. 1 shows the MHS solution of both approaches for the same specific problem in order to show the differences between MHS based on traditional AGVs and the proposed approach. The problem consists of connecting six workcells, which are fed with pallets,which are then dispatched.The solution based on the use of a traditional AGV, Fig. 1(a), shows how the guidepaths are designed to reach all the workcells, given the floor layout and considering the capabilities of the vehicle, i.e., the way of navigating and performing accurate manoeuvres. In order to simplify the guidepath, some connections are usually obviated, at the cost of performance, and non-optimal paths are usually used by the system. We can observe that to pickup a pallet at docking-point 6 and dispatch it at docking-point 4, the AGV should go through both central points to reach the goal because the path between docking-point 4 and docking-point 6is obviated for simplicity. In addition, the guidepath should be redesigned when the floor layout is modified, e.g., new work-stations, obstacles, etc.The proposed approach is based on the development of a flexible AGV, able to navigate freely between different places of the workplace while adapting to possible modifications of the environment, including non-expected objects and layout changes.The solution based on the use of a flexible AGV, Fig. 1(b), shows that there is one AGV with a rough description of the environment, including location of workcells and way-points to facilitate the manoeuvres. By developing an AGV that it is automatically configured by this world description and which is able to navigate freely through this workplace, the MHS solution is simple and efficient. Following the previous example, the flexible AGV can navigate directly from docking-point 4to docking-point 6 because optimal paths considering the current situation of the environment are calculated on-board. In addition, in order to adapt the system to a different layout, we only have to provide a different world description of the workplace.In order to develop the flexible AGV system that satisfies the requirements mentioned in the previous section, we have implemented a set of techniques which are integrated following the scheme shown in Fig. 2. The different methods are grouped into modules according to a functional decomposition of the problem that they address 12. Organisation by modules provides clear interfaces facilitating the integration between different functionalities. Besides, the modules are integrated following a layered organization, depending on the level of abstraction, from hardware dependent problems to cognitive problems. This scheme can be used to develop any flexible AGV system equipped with a laser scanner, a laser guidance system and odometry. Nevertheless, the techniques used to solve the different functionalities required by the flexible AGV system can be integrated using other software frameworks.In the implementation presented in this work, the modules are organized into layers as follows. The virtual robot or lower layer provides the interface to the actual hardware. The middle layer is formed by the perception and controller modules, which maintains a consistent representation of the environment around the robot and provides the reactive robot control, respectively. The higher layer maintains the representation of the objects in a world frame,navigation module, and takes decisions, planner module, considering global and external information.In the perception module there are two important processes:the local obstacle modeller and the position filter. The first computes and maintains a local model of the obstacles detected by the range sensor, which is used to detect dangerous zones and to help in obstacle avoidance. In the second process, the position filter integrates estimations provided by an indoor positioning system with the odometry information.The planner consists of a single process which receives a task from the management system, or the system that commands it, and generates a plan taking into account the current position of the vehicle and the topological map. The plan is stored as a finite state machine, where each state is a given subtask. If any of the subtasks cannot be accomplished, the current task is halted and the management system is informed.For navigation, there are two important processes as well: the map building and the path planning. The first one integrates the current position and perception into a fuzzy grid map, which has been custom modified to account for the dynamic working environment. The uncertainty of the different obstacles is modelled using fuzzy logic. The path planner runs continuously but asynchronously to other modules. Using a D path planner, it obtains the optimal path from the AGV position to the desired subgoal position. The D* planner has been modified to take into account the uncertai
收藏